Jongha Lee

FULL-STACK BCI ENGINEER

Full-stack brain-computer interface engineer and innovator with 10+ years across neuroscience, semiconductor fabrication, and bioinspired medical devices. I pioneer human cognitive circuit modulation and translate breakthrough neural engineering into deployable clinical technologies.

As the **first engineer** at Axoft, I led development of an ultrasoft, immune-response-free BCI from **concept to clinically viable prototype**, achieving long-term in vivo stability, seamless surgical integration, and preclinical validation toward first-in-human studies. Experienced in startup team building, FDA Breakthrough Device designation strategy, and cross-functional leadership.

PROFESSIONAL EXPERIENCE

Principal Scientist / Axoft, Cambridge, MA
JUN 2025 - OCT 2025 / Full-time

Senior Research Scientist / Axoft, Cambridge, MA

MAR 2022 - MAY 2025 / Full-time

- First engineer of a neurotechnology startup, leading the development of an ultrasoft, immune-response-free brain-computer interface from early concept to a clinically viable prototype. Led 5+ accelerated design-build-test cycles (3-6 months each), achieving stable, high-fidelity neural recordings for up to 18 months in vivo, a critical step toward human clinical trials.
- **Directed full-stack development** including advanced polymer synthesis, semiconductor microfabrication, precision electronics packaging, implantation techniques, neurosurgical execution, and large-scale neural data analysis. Oversaw and mentored a core multidisciplinary team while coordinating with executive team, manufacturing, preclinical, and vendor partners to align technical milestones with strategic goals.
- First author of a company research preprint (medRxiv) consolidating the company's three years of development, detailing design innovations, fabrication processes, and in vivo validation, and establishing the definitive technical foundation for clinical translation.
- Contributed to regulatory submissions supporting FDA Breakthrough Device Designation and transferred validated preclinical protocols to the clinical translation team for first-in-human readiness.
- **Designed and executed in vivo validation studies** that demonstrated reduced immune response, chronic biocompatibility, and stable long-term signal quality. Achieved **motor intention decoding** in preclinical models with implanted ultrasoft probes, illustrating the potential for next-generation, patient-controlled neuroprosthetic systems.

Postdoctoral Researcher / Harvard University, Cambridge, MA FEB 2018 - FEB 2022 / Full-time

 Advanced next-generation neural interface technologies in the Donhee Ham Group (CMOS-based high-density neural recording) and the Lieber Group (immune-response-free, syringe-injectable microelectrode arrays), integrating device innovation with neuroscience-driven applications. 781.777.3651

in jonghalee922

m jongha.lee922@gmail.com

jonghalee.com

EDUCATION/TRAINING

2018-2022 | Postdoctoral Training in Neurotechnology
HARVARD UNIVERSITY

2012-2017 | Ph.D.
Bio & Chemical Engineering
SEOUL NATIONAL UNIVERSITY, KOREA

2010-2012 | M.S.

Materials Science & Engineering
SEOUL NATIONAL UNIVERSITY, KOREA

2006-2010 B.S.

Materials Science & Engineering SEOUL NATIONAL UNIVERSITY, KOREA

SKILLS

Neural Engineering: BCI systems, neural signal decoding, Brain immune response

Materials & Fabrication: Polymer synthesis, semiconductor fabrication

Electronics & Integration: Device packaging

In Vivo: Rodent/porcine neurosurgery, implantation, chronic validation

Data & Analysis: Neural data acquisition, Python analysis
Leadership: 0–1 prototyping, technical strategy, project management and execution, stakeholder coordination

ADDITIONAL INFO.

Authorized to work in the U.S. without sponsorship.

9 first-authored peer-reviewed research papers3 U.S. patents (filed/granted)12 Korean patents (filed/granted)

Final Update: AUG 2025